Đề thi minh họa Trung học Phổ thông Quốc gia năm 2017 môn Toán
Bạn đang xem 20 trang mẫu của tài liệu "Đề thi minh họa Trung học Phổ thông Quốc gia năm 2017 môn Toán", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Đề thi minh họa Trung học Phổ thông Quốc gia năm 2017 môn Toán

BỘ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2017 Môn: TOÁN ĐỀ MINH HỌA (Đề gồm có 08 trang) Thời gian làm bài: 90 phút, không kể thời gian phát đề Câu 1. Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ? A. y x2 x 1. B. y x3 3 x 1. C. y x4 x 2 1. D. y x3 3 x 1. Câu 2. Cho hàm số y f() x có limf ( x ) 1 và limf ( x ) 1. Khẳng định nào sau x x đây là khẳng định đúng ? A. Đồ thị hàm số đã cho không có tiệm cận ngang. B. Đồ thị hàm số đã cho có đúng một tiệm cận ngang. C. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y 1 và y 1. D. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng x 1 và x 1. Câu 3. Hỏi hàm số y 2 x4 1 đồng biến trên khoảng nào ? 1 1 A. ; . B. (0; ). C. ; . D. ( ; 0). 2 2 Câu 4. Cho hàm số y f() x xác định, liên tục trên và có bảng biến thiên : x 0 1 + y' + 0 + + 0 y 1 Khẳng định nào sau đây là khẳng định đúng ? A. Hàm số có đúng một cực trị. B. Hàm số có giá trị cực tiểu bằng 1. C. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng 1. D. Hàm số đạt cực đại tại x 0 và đạt cực tiểu tại x 1. 3 Câu 5. Tìm giá trị cực đại yCĐ của hàm số y x 3 x 2. A. yCĐ 4. B. yCĐ 1. C. yCĐ 0. D. yCĐ 1. 1 Câu 13. Tính đạo hàm của hàm số y 13x . 13x A. y' x .13x 1 . B. y' 13x .ln13. C. y' 13x . D. y '. ln13 Câu 14. Giải bất phương trình log2 (3x 1) 3. 1 10 A. x 3. B. x 3. C. x 3. D. x . 3 3 2 Câu 15. Tìm tập xác định D của hàm số y log2 ( x 2 x 3) . A. D ( ; 1] [3; ). B. D [ 1; 3]. C. D ( ; 1) (3; ). D. D ( 1; 3) . 2 Câu 16. Cho hàm số f( x ) 2x .7 x . Khẳng định nào sau đây là khẳng định sai ? 2 A. f( x ) 1 x x log2 7 0. B. f( x ) 1 x ln 2 x2 ln7 0. 2 C. f( x ) 1 x log7 2 x 0. D. f( x ) 1 1 x log2 7 0. Câu 17. Cho các số thực dương a, b, với a 1. Khẳng định nào sau đây là khẳng định đúng ? 1 A. log (ab ) log b . B. log (ab ) 2 2log b . a2 2 a a2 a 1 1 1 C. log (ab ) log b . D. log (ab ) log b . a2 4 a a2 2 2 a x 1 Câu 18. Tính đạo hàm của hàm số y . 4x 1 2(x 1)ln 2 1 2(x 1)ln 2 A. y' . B. y' . 22 x 22x 1 2(x 1)ln 2 1 2(x 1)ln 2 C. y' 2 . D. y' 2 . 2x 2x Câu 19. Đặt a log2 3, b log5 3. Hãy biểu diễn log6 45 theo a và b. a 2 ab 2a2 2 ab A. log 45 . B. log 45 . 6 ab 6 ab a 2 ab 2a2 2 ab C. log 45 . D. log 45 . 6 ab b 6 ab b Câu 20. Cho hai số thực a và b, với 1 a b. Khẳng định nào dưới đây là khẳng định đúng ? A. logab 1 log b a . B. 1 logab log b a . C. logba log a b 1. D. logba 1 log a b. 3 37 9 81 A. . B. . C. . D. 13. 12 4 12 Câu 28. Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y 2( x 1) ex , trục tung và trục hoành. Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox. A. V 4 2 e . B. V (4 2 e ) . C. V e2 5. D. V ( e2 5) . Câu 29. Cho số phức z 3 2 i . Tìm phần thực và phần ảo của số phức z. A. Phần thực bằng –3 và Phần ảo bằng –2i. B. Phần thực bằng –3 và Phần ảo bằng –2. C. Phần thực bằng 3 và Phần ảo bằng 2i. D. Phần thực bằng 3 và Phần ảo bằng 2. Câu 30. Cho hai số phức z1 1 i và z2 2 3 i . Tính môđun của số phức z1 z 2 . A. |z1 z 2 | 13 . B. |z1 z 2 | 5 . C. |z1 z 2 | 1. D. |z1 z 2 | 5. Câu 31. Cho số phức z thỏa mãn (1 i ) z 3 i . Hỏi điểm biểu diễn của z là điểm nào trong các điểm M, N, P, Q ở hình bên ? A. Điểm P. B. Điểm Q. C. Điểm M. D. Điểm N. Câu 32. Cho số phức z 2 5 i . Tìm số phức w iz z . A. w 7 3 i . B. w 3 3 i . C. w 3 7 i . D. w 7 7 i . 4 2 Câu 33. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z z 12 0 . Tính tổng T | z1 | | z 2 | | z 3 | | z 4 |. A. T 4. B. T 2 3. C. T 4 2 3. D. T 2 2 3. Câu 34. Cho các số phức z thỏa mãn | z | 4. Biết rằng tập hợp các điểm biểu diễn các số phức w (3 4 i ) z i là một đường tròn. Tính bán kính r của đường tròn đó. A. r 4. B. r 5. C. r 20. D. r 22. Câu 35. Tính thể tích V của khối lập phương ABCD.'''' A B C D , biết AC' a 3 . 3 6a3 1 A. V a3 . B. V . C. V 3 3 a3 . D. V a3. 4 3 Câu 36. Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA 2 a . Tính thể tích V của khối chóp S.ABCD. 5 Câu 42. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho. 5 15 5 15 4 3 5 A. V . B. V . C. V . D. V . 18 54 27 3 Câu 43. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : 3x – z + 2 0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P) ? A. n4 ( 1; 0; 1) . B. n1 (3; 1; 2) . C. n3 (3; 1; 0) . D. n2 (3; 0; 1). Câu 44. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) : (x 1)2 ( y 2) 2 ( z 1) 2 9. Tìm tọa độ tâm I và tính bán kính R của (S). A. I(–1; 2; 1) và R 3. B. I(1; –2; –1) và R 3. C. I(–1; 2; 1) và R 9. D. I(1; –2; –1) và R 9. Câu 45. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : 3x 4 y 2 z 4 0 và điểm A(1; –2; 3). Tính khoảng cách d từ A đến (P). 5 5 5 5 A. d . B. d . C. d . D. d . 9 29 29 3 Câu 46. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng có phương trình : x 10 y 2 z 2 . 5 1 1 Xét mặt phẳng (P) : 10x + 2y + mz + 11 0, m là tham số thực. Tìm tất cả các giá trị của m để mặt phẳng (P) vuông góc với đường thẳng . A. m –2. B. m 2 . C. m –52. D. m 52. Câu 47. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0; 1; 1) và B(1; 2; 3). Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB. A. x + y + 2z – 3 0. B. x + y + 2z – 6 0. C. x + 3y + 4z – 7 0. D. x + 3y + 4z – 26 0. Câu 48. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2; 1; 1) và mặt phẳng (P) : 2x y 2 z 2 0. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng 1. Viết phương trình của mặt cầu (S). A. (S) : (x 2)2 ( y 1) 2 ( z 1) 2 8. B. (S) : (x 2)2 ( y 1) 2 ( z 1) 2 10. C. (S) : (x 2)2 ( y 1) 2 ( z 1) 2 8. D. (S) : (x 2)2 ( y 1) 2 ( z 1) 2 10. 7 BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA 2017 Bài thi: TOÁN ĐỀ THI THỬ NGHIỆM Thời gian làm bài: 90 phút, không kể thời gian phát đề (Đề thi gồm có 07 trang) Mã đề thi 01 Họ, tên thí sinh: .......................................................................... Số báo danh: ............................................................................... 21x Câu 1. Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số y ? x 1 A. x 1. B. y 1. C. y 2. D. x 1. Câu 2. Đồ thị của hàm số y x42 22 x và đồ thị của hàm số yx 2 4 có tất cả bao nhiêu điểm chung ? A. 0. B. 4. C. 1. D. 2. Câu 3. Cho hàm số y f x xác định, liên tục trên đoạn 2;2 và có đồ thị là đường cong trong hình vẽ bên. Hàm số fx đạt cực đại tại điểm nào dưới đây ? A. x 2. B. x 1. C. x 1. D. x 2. Câu 4. Cho hàm số y x32 2 x x 1. Mệnh đề nào dưới đây đúng ? 1 1 A. Hàm số nghịch biến trên khoảng ;1 . B. Hàm số nghịch biến trên khoảng ;. 3 3 1 C. Hàm số đồng biến trên khoảng ;1 . D. Hàm số nghịch biến trên khoảng (1; ). 3 Câu 5. Cho hàm số y f x xác định trên \{0}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f x m có ba nghiệm thực phân biệt. A. [ 1;2]. B. ( 1;2). C. ( 1;2]. D. ( ;2]. Trang 1/7 – Mã đề thi 01 Câu 16. Với các số thực dương a, b bất kì. Mệnh đề nào dưới đây đúng ? 2a3 21a3 A. log2 1 3log 2ab log 2 . B. log2 1 log 2ab log 2 . b b 3 2a3 21a3 C. log2 1 3log 2ab log 2 . D. log2 1 log 2ab log 2 . b b 3 Câu 17. Tìm tập nghiệm S của bất phương trình log11 xx 1 log 2 1 . 22 1 A. S (2; ). B. S ( ;2). C. S ;2 . D. S ( 1;2). 2 Câu 18. Tính đạo hàm của hàm số yx ln 1 1 . 1 1 A. y . B. y . 2xx 1 1 1 11 x 1 2 C. y . D. y . xx 1 1 1 xx 1 1 1 Câu 19. Cho ba số thực dương abc,, khác 1. Đồ thị các hàm số y ax,, y b x y c x được cho trong hình vẽ bên. Mệnh đề nào dưới đây đúng ? A. abc . B. a c b. C. b c a. D. c a b. xx Câu 20. Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình 6 3 mm 2 0 có nghiệm thuộc khoảng 0;1 . A. [3;4]. B. [2;4]. C. (2;4). D. (3;4). Câu 21. Xét các số thực ab, thỏa mãn ab 1. Tìm giá trị nhỏ nhất Pmin của biểu thức 22 a Pa logab 3log . b b A. Pmin 19. B. Pmin 13. C. Pmin 14. D. Pmin 15. Câu 22. Tìm nguyên hàm của hàm số f( x ) cos2 x . 1 1 A. f( x )d x sin 2 x C . B. f( x )d x sin 2 x C . 2 2 C. f( x )d x 2sin 2 x C . D. f( x )d x 2sin 2 x C . Trang 3/7 – Mã đề thi 01
File đính kèm:
de_thi_minh_hoa_trung_hoc_pho_thong_quoc_gia_nam_2017_mon_to.pdf