Đề cương ôn tập học kỳ II môn Toán Lớp 7
Bạn đang xem tài liệu "Đề cương ôn tập học kỳ II môn Toán Lớp 7", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Đề cương ôn tập học kỳ II môn Toán Lớp 7

ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II MÔN TOÁN LỚP 7 I. PHẦN LÝ THUYẾT a.Phần đại số 7 1. Dấu hiệu điều tra, tần số, công thức tính số TB cộng 2. Vẽ biểu đồ đoạn thẳng (cột, hình chữ nhật) 3. Biểu thức đại số, giá trị biểu thức đại số 4. Đơn thức là gì? Bậc của đơn thức, thế nào là hai đơn thức đồng dạng? Tính tích tổng các đơn thức đồng dạng 5. Đa thức là gì? Bậc của đa thức, thu gọn đa thức. 6. Đa thức 1 biến là gì? Thu gọn, sắp xếp đa thức 1 biến? Tính tổng hiệu đa thức 1 biến. 7. Nghiệm của đa thức 1 biến là gì? Khi nào 1 số được gọi là nghiệm của đa thức 1 biến? Cách tìm nghiệm của đa thức 1 biến. b.Phần hình học 7 1. Các trường hợp bằng nhau của hai tam giác 2. Tam giác cân, tam giác đều 3. Định lý pitago 4. Quan hệ cạnh góc trong tam giác, hình chiếu và đường xiên, bất đẳng thức trong tam giác 5. Tính chất 3 đường trung tuyến 6. Tính chất phân giác của góc, tính chất 3 đường phân giác tròn tam giác 7. Tính chất 3 đường trung trực của tam giác 8. Tính chất 3 đường cao trong tam giác II. BÀI TẬP A) THỐNG KÊ Câu 1. Điểm kiểm tra toán học kỳ I của học sinh lớp 7A được ghi lại như sau: 10 9 7 8 9 1 4 9 1 5 10 6 4 8 5 3 5 6 8 10 3 7 10 6 6 2 4 5 8 10 3 5 5 9 10 8 9 5 8 5 a) Dấu hiệu cần tìm ở đây là gì? b) Lập bảng tần số và tính số trung bình cộng. c) Tìm mốt của dấu hiệu. d) Dựng biểu đồ đoạn thẳng (trục hoành biểu diễn điểm số; trục tung biểu diễn tần số). Câu 2. Một GV theo dõi thời gian làm bài tập(thời gian tính theo phút) của 30 1 a- Dấu hiệu ở đây là gì? Số các giá trị là bao nhiêu? b- Lập bảng tần số? Tìm mốt của dấu hiệu?Tính số trung bình cộng? c- Vẽ biểu đồ đoạn thẳng? Câu 7. Số cơn bão hàng năm đổ bộ vào lãnh thổ Việt Nam trong 20 năm cuối cùng của thế kỷ XX được ghi lại trong bảng sau: 3 3 6 6 3 5 4 3 9 8 2 4 3 4 3 4 3 5 2 2 a/ Dấu hiệu ở đây là gì? b/ Lập bảng “tần số” và tính xem trong vòng 20 năm, mỗi năm trung bình có bao nhiêu cơn bão đổ bộ vào nước ta ? Tìm mốt c/ Biểu diễn bằng biểu đồ đoạn thẳng bảng tần số nói trên. B. ĐƠN, ĐA THỨC Câu 1: Tính giá trị của biểu thức: 1 1 1 a) A = 2x2 - y, tại x = 2 ; y = 9. b) B = a2 3b2 , tại a = -2 ; b . 3 2 3 1 2 1 1 c) P = 2x2 + 3xy + y2 tại x = ; y = . d) 12ab2; tại a ; b . 2 3 3 6 1 2 2 3 1 e) xy x tại x = 2 ; y = . 2 3 4 Câu 2: Thu gọn đa thức sau: a) A = 5xy – 3,5y2 - 2 xy + 1,3 xy + 3x -2y; 1 7 3 3 1 b) B = ab2 ab2 a 2b a 2b ab2 . 2 8 4 8 2 c) C = 2 a 2b -8b2+ 5a2b + 5c2 – 3b2 + 4c2. Câu 3: Nhân đơn thức: 1 2 a) m 24n 4mn ; 3 b) (5a)(a2b2).(-2b)(-3a). Câu 4: Tính tổng của các đa thức: A = x2y - xy2 + 3 x2 và B = x2y + xy2 - 2 x2 - 1. Câu 5: Cho P = 2x2 – 3xy + 4y2 ; Q = 3x2 + 4 xy - y2 ; R = x2 + 2xy + 3 y2 . Tính: P – Q + R. Câu 6: Cho hai đa thức: M = 3,5x2y – 2xy2 + 1,5 x2y + 2 xy + 3 xy2 N = 2 x2y + 3,2 xy + xy2 - 4 xy2 – 1,2 xy. 3 Câu 15: Cho f(x) = x3 − 2x + 1, g(x) = 2x2 − x3 + x −3 a) Tính f(x) + g(x) ; f(x) − g(x). b) Tính f(x) +g(x) tại x = – 1; x =-2 Câu 16: Cho đa thức M = x2 + 5x4 − 3x3 + x2 + 4x4 + 3x3 − x + 5 N = x − 5x3 − 2x2 − 8x4 + 4 x3 − x + 5 a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến b. Tính M+N; M- N Câu 17. Cho đa thức A = −2 xy2 + 3xy + 5xy 2 + 5xy + 1 a. Thu gọn đa thức A. 1 b. Tính giá trị của A tại x= ;y=-1 2 Câu 18. Cho hai đa thức P ( x) = 2x4 − 3x2 + x -2/3 và Q( x) = x4 − x3 + x2 +5/3 a. Tính M (x) = P( x) + Q( x) b. Tính N ( x) = P( x) − Q( x )và tìm bậc của đa thức N ( x) Câu 19. Cho hai đa thức f(x) = 9 – x5 + 4x - 2x3 + x2 – 7x4 g(x) = x5 – 9 + 2x2 + 7x4 2x3 - 3x a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến b) Tính tổng h(x) = f(x) + g(x). Câu 20: Cho P(x) = 2x3 – 2x – 5 ; Q(x) = –x3 + x2 + 1 – x. Tính: a. P(x) +Q(x); b. P(x) − Q(x). Câu 21: Cho đa thức f(x) = – 3x2 + x – 1 + x4 – x3– x2 + 3x4 g(x) = x4 + x2 – x3 + x – 5 + 5x3 – x2 a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến. 5 Bài 4) Cho tam giác nhọn ABC. Vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. Chứng minh rằng: a) ABE ADC b) B¼MC = 1200 Bài 5) Cho ∆ABC vuông ở C, có Aˆ 600 , tia phân giác của góc BAC cắt BC ở E, kẻ EK vuông góc với AB. (K AB), kẻ BD vuông góc AE (D AE). Chứng minh a) AK=KB b) AD=BC Bài 6) Cho ∆ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K a) Chứng minh BNC= CMB b) Chứng minh ∆BKC cân tại K c) Chứng minh BC < 4.KM Bài 7): Cho ∆ ABC vuông tại A có BD là phân giác, kẻ DE ⊥ BC ( E∈BC ). Gọi F là giao điểm của AB và DE. Chứng minh rằng a) BD là trung trực của AE b) DF = DC c) AD < DC; d) AE // FC. Bài 8) Cho tam giác ABC vuông tại A, góc B có số đo bằng 600 . Vẽ AH vuông góc với BC, (H thuộc BC ) . a. So sánh AB và AC; BH và HC; b. Lấy điểm D thuộc tia đối của tia HA sao cho HD = HA. Chứng minh rằng hai tam giác AHC và DHC bằng nhau. c. Tính số đo của góc BDC. Bài 9 . Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F. a. Chứng minh ∆BEM= ∆CFM . b. Chứng minh AM là trung trực của EF. c. Từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chứng minh rằng ba điểm A, M, D thẳng hàng. 7 MỘT SỐ ĐỀ THAM KHẢO Đề 1 Bài 1:Thời gian giải 1 bài toán của 40 học sinh được ghi trong bảng sau : (Tính bằng phút) 8 10 10 8 8 9 8 9 8 9 9 12 12 10 11 8 8 10 10 11 10 8 8 9 8 10 10 8 11 8 12 8 9 8 9 11 8 12 8 9 a) Dấu hiệu ở đây là gì ? Số các dấu hiệu là bao nhiêu? b) Lập bảng tần số. c) Nhận xét d) Tính số trung bình cộng X , Mốt e)Vẽ biểu đồ đoạn thẳng. 1 Bài 2: Cho : P(x) = - 2x2 + 3x4 + x3 +x2 - x 4 Q(x) = -6x4 + 3x2 - 2 - 4x3 – 2x2 a) Sắp xếp các hạng tử của mỗi đa thức theo luỹ thừa giảm dần của biến. b) Tính P(x) + Q(x) và P(x) - Q(x) c) Chứng tỏ x = 0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x) Bài 3 : Cho đa thức : P(x) = x4 + 3x2 + 3 a) Tính P(1), P(-1). b) Chứng tỏ rằng đa thức trên không có nghiệm. Bài 4 : Cho ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC. a) Chứng minh : BAˆD BDˆA; b) Chứng minh : AD là phân giác của góc HAC c) Chứng minh : AK = AH. d) Chứng minh : AB + AC < BC +AH 9 Đề 3 1 1 Bài 1 : Cho các đơn thức : 2x2y3 ; 5y2x3 ; - x3 y2 ; - x2y3 2 2 a) Hãy xác định các đơn thức đồng dạng . b) Tính đa thức F là tổng các đơn thức trên c) Tìm giá trị của đa thức F tại x = -3 ; y = 2 Bài 2: Cho các đa thức: f(x) = x5 – 3x2 + x3 – x2 -2x + 5 ; g(x) = x5 – x4+ x2 - 3x + x2 + 1 a) Thu gọn và sắp xếp đa thức f(x) và g(x) theo luỹ thừa giảm dần. b) Tính h(x) = f(x) + g(x) Bài 3 :Cho tam giác MNP vuông tại M, biết MN = 6cm và NP = 10cm . Tính độ dài cạnh MP Bài 4: Cho tam giác ABC trung tuyến AM, phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F. Chứng minh rằng : a) Tam giác ABC cân b) Vẽ đường thẳng BK//EF, cắt AC tại K. Chứng minh rằng : KF = CF AB AC c) AE = 2 11 Đề 5 Bài 1: Điểm kiểm tra toán của 1 lớp 7 được ghi như sau : 6 5 8 7 7 0 0 0 8 3 5 4 8 9 6 8 5 4 3 8 2 4 6 8 2 6 3 5 6 6 8 4 9 10 6 9 8 7 7 7 4 1 8 7 3 3 4 8 6 8 6 6 7 8 a) Lập bảng tần số . Tính số trung bình cộng , tìm Mốt của dấu hiệu b) Vẽ biểu đồ đoạn thẳng Bài 2 : Cho 2 đa thức : M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6 N(x) = - x2 – x4 + 4x3 – x2 -5x3 + 3x + 1 + x a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến b) Tính : M(x) + N(x) ; M(x) – N(x) c) Đặt P(x) = M(x) – N(x) . Tính P(x) tại x = -2 Bài 3 : Tìm m, biết rằng đa thức Q(x) = mx2 + 2mx – 3 có 1 nghiệm x = -1 Bài 4 :Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC ( E € BC) . Đường thẳng EH và BA cắt nhau tại I . a/ Chứng minh rẳng : ΔABH = ΔEBH ; b/ Chứng minh BH là trung trực của AE c/ So sánh HA và HC ; d/ Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC 13 Đề 7 Bài 1: Thời gian giải 1 bài toán của 40 học sinh được ghi trong bảng sau : (Tính bằng phút) 9 10 10 8 8 9 8 9 10 9 9 12 12 10 11 8 8 10 10 11 10 8 8 9 11 10 10 8 11 8 12 8 9 8 9 11 8 12 8 9 a)Dấu hiệu ở đây là gì ? Số các dấu hiệu là bao nhiêu? b)Lập bảng tần số. c)Nhận xét d)Tính số trung bình cộng X , Mốt e)Vẽ biểu đồ đoạn thẳng. 1 Bài 2 : Cho : P(x) = - 2x2 + 3x4 + x3 +x2 - x 4 Q(x) = x4 + 3x2 - 4 - 4x3 – 2x2 a. Sắp xếp các hạng tử của mỗi đa thức theo luỹ thừa giảm dần của biến. b. Tính P(x) + Q(x) và P(x) - Q(x) c. Chứng tỏ x = 0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x) Bài 3: Cho đa thức : P(x) = x4 + 3x2 + 3 a)Tính P(1), P(-1). b)Chứng tỏ rằng đa thức trên không có nghiệm. Bài 4/ Cho tam giác ABC cân tại A, góc A= góc C= 800 . Từ B và C kẻ các đường thẳng cắt các cạnh tương ứng ở Dvà E sao cho C¼BD = 600 và B¼CE = 500 .Tính B¼DE 15 ĐỀ 9 Bài 1: Điểm kiểm tra môn Toán của một nhóm học sinh được thống kê bằng bảng sau: 7 9 7 9 10 9 7 8 9 7 8 8 9 8 8 8 7 10 8 10 a) Dấu hiệu cần quan tâm là gì? b) Lập bảng tần số và nhận xét. c) Tìm số trung bình điểm kiểm tra của cả lớp. Tìm mốt của dấu hiệu. Bài 2: Cho đa thức: A = –4x5y3 + x4y3 – 3x2y3z2 + 4x5y3 – x4y3 + x2y3z2 – 2y4 a) Thu gọn rồi tìm bậc của đa thức A. 2 1 b) Tìm đa thức B, biết rằng: B – 2x2y3z2 + y4 – x4y3 = A 3 5 7 Bài 3: Cho hai đa thức: P(x) = –3x2 + x + và Q(x) = –3x2 + 2x – 2 4 1 a) Tính: P(–1) và Q 2 b) Tìm nghiệm của đa thức P(x) – Q(x) Bài 4: Cho ABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I. a) Chứng minh AE là phân giác góc CAB b) Chứng minh AD là trung trực của CD c) So sánh CD và BC d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB. 17
File đính kèm:
de_cuong_on_tap_hoc_ky_ii_mon_toan_lop_7.doc