Đề cương ôn tập học kì I môn Toán Lớp 9 - Năm học 2018-2019
Bạn đang xem tài liệu "Đề cương ôn tập học kì I môn Toán Lớp 9 - Năm học 2018-2019", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Đề cương ôn tập học kì I môn Toán Lớp 9 - Năm học 2018-2019
ĐỀ CƯƠNG ÔN TẬP HKI MÔN TOÁN LỚP 9 Phần A- Đại số Chương I CĂN BẬC HAI - CĂN BẬC BA A - LÝ THUYẾT I. ĐẠI SỐ: 1) Định nghĩa, tính chất căn bậc hai a) Căn bậc hai của một số a không âm là số x sao cho x2 a Mỗi số dương có đúng 2 căn bậc hai Ví dụ : Số 9 có hai căn bậc hai là : 3 và 3 b) Với số dương a, số a được gọi là căn bậc hai số học của a. x 0 c) Với a 0 ta có x = a 2 2 x a a d) Với hai số a và b không âm, ta có: a < b a b 2 A neu A 0 e) A A A neu A 0 2) Các công thức biến đổi căn thức 1. A2 A 2. AB A. B (A 0, B 0) A A 3. (A 0, B > 0) 4. A2B A B (B 0) B B 5. A B A2B (A 0, B 0) A B A2B (A < 0, B 0) C A B A 1 C 2 6. AB (AB 0, B 0) 7. (A 0, A B ) B B A B A B2 A A B C C A B 8. (B > 0) 9. (A, B 0, A B) B B A B A B Bài tập: Tìm điều kiện xác định: Với giá trị nào của x thì các biểu thức sau đây xác định: 4 1) 2x 3 3)1 x 2 5) 7) 5 x 3 x 2 6 3 2) 3x 4 4) 2 6) 3 8) x 2 1 2x 3x 5 Rút gọn biểu thức Bài 1 1) 12 5 3 48 2) 5 5 20 3 45 3) 2 32 4 8 5 18 4) 3 12 4 27 5 48 5) 12 75 27 6) 2 18 7 2 162 1 1 7) 3 20 2 45 4 5 8) ( 2 2) 2 2 2 9) 5 1 5 1 1 1 2 2 10) 11) 12) 2 2 5 2 5 2 4 3 2 4 3 2 1 2 13) ( 28 2 14 7) 7 7 8 14) ( 14 3 2) 2 6 28 15) ( 6 5) 2 120 16) (2 3 3 2) 2 2 6 3 24 17) (1 2) 2 ( 2 3) 2 18) ( 3 2) 2 ( 3 1) 2 19) ( 5 3) 2 ( 5 2) 2 20) ( 19 3)( 19 3) Đề cương ôn tập HKI môn toán lớp 9 1 Năm học:2018-2019 c) x y z 4 2 x 2 4 y 3 6 z 5 1 d) x 5 y 2005 z 2007 x y z 2 1 e) x 2000 y 2001 z 2002 x y z 3000 2 CÁC BÀI TOÁN RÚT GỌN: B.Bài tập luyện tập: x 2x x Bài 1 Cho biểu thức : A = với ( x >0 và x ≠ 1) x 1 x x a) Rút gọn biểu thức A; b) Tính giá trị của biểu thức A tại x 3 2 2 . a 4 a 4 4 a Bài 2. Cho biểu thức : P = ( Với a 0 ; a 4 ) a 2 2 a a) Rút gọn biểu thức P; b)Tìm giá trị của a sao cho P = a + 1. x 1 2 x x x Bài 3: Cho biểu thức A = x 1 x 1 a)Đặt điều kiện để biểu thức A có nghĩa; b)Rút gọn biểu thức A; c)Với giá trị nào của x thì A< -1. 1 1 x Bài 4: Cho biểu thức : B = 2 x 2 2 x 2 1 x a) Tìm TXĐ rồi rút gọn biểu thức B; b) Tính giá trị của B với x =3; 1 c) Tìm giá trị của x để A . 2 x 1 2 x 2 5 x Bài 5: Cho biểu thức : P = x 2 x 2 4 x a) Tìm TXĐ; b) Rút gọn P; c) Tìm x để P = 2. 1 1 a 1 a 2 Bài 6: Cho biểu thức: Q = ( ) : ( ) a 1 a a 2 a 1 a) Tìm TXĐ rồi rút gọn Q; b) Tìm a để Q dương; c) Tính giá trị của biểu thức biết a = 9- 45 . 15 x 11 3 x 2 x 3 Bài 7 : Cho biểu thức : K = x 2 x 3 1 x x 3 1 a) Tìm x để K có nghĩa; b) Rút gọn K; c) Tìm x khi K= ; 2 d) Tìm giá trị lớn nhất của K. x 2 x 2 x 2 2x 1 Bài 8 : Cho biểu thức: G= . x 1 x 2 x 1 2 a)Xác định x để G tồn tại; b)Rút gọn biểu thức G; c)Tính giá trị của G khi x = 0,16; d)Tìm gía trị lớn nhất của G; e)Tìm x Z để G nhận giá trị nguyên; f)Chứng minh rằng : Nếu 0 < x < 1 thì M nhận giá trị dương; g)Tìm x để G nhận giá trị âm; Đề cương ôn tập HKI môn toán lớp 9 3 Năm học:2018-2019 b) Tính x 2018 Bài 2: Cho f (x) x3 6x 5 Tính f (a) với a 3 3 17 3 3 17 Bài 3: Tính giá trị biểu thức P x3 3x 2009 1 Biết x 3 4 15 3 4 15 Bài 4: Cho x 3 3 2 2 3 3 2 2 ; y 3 17 12 2 3 17 12 2 Tính giá trị của biểu thức P x3 y3 3(x y) 1977 Chương II HÀM SỐ - HÀM SỐ BẬC NHẤT I. HÀM SỐ: Khái niệm hàm số * Nếu đại lượng y phụ thuộc vào đại lượng x sao cho mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x được gọi là biến số. * Hàm số có thể cho bởi công thức hoặc cho bởi bảng. II. HÀM SỐ BẬC NHẤT: Kiến thức cơ bản: 3) Định nghĩa, tính chất hàm số bậc nhất a) Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b (a, b R và a 0) b) Hàm số bậc nhất xác định với mọi giá trị x R. Hàm số đồng biến trên R khi a > 0. Nghịch biến trên R khi a < 0. 4) Đồ thị của hàm số y = ax + b (a 0) là một đường thẳng cắt trục tung tại điểm có tung độ bằng b (a: hệ số góc, b: tung độ gốc). 5) Cho (d): y = ax + b và (d'): y = a'x + b' (a, a’ ≠ 0). Ta có: a a' a a' (d) (d') (d) (d') b b' b b' (d) (d') a a' (d) (d') a.a' 1 6) Gọi là góc tạo bởi đường thẳng y = ax + b và trục Ox thì: Khi a > 0 ta có tan = a Khi a < 0 ta có tan ’ a ( ’ là góc kề bù với góc ) Bài tập: Bài 1: Cho hai đường thẳng (d1): y = ( 2 + m )x + 1 và (d2): y = ( 1 + 2m)x + 2 1) Tìm m để (d1) và (d2) cắt nhau . 2) Với m = – 1 , vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2) bằng phép tính. Bài 2: Cho hàm số bậc nhất y = (2 - a)x + a . Biết đồ thị hàm số đi qua điểm M(3;1), hàm số đồng biến hay nghịch biến trên R ? Vì sao? Bài 4: Cho hai đường thẳng y = mx – 2 ;(m 0) và y = (2 - m)x + 4 ;(m 2) . Tìm điều kiện của m để hai đường thẳng trên: a)Song song; b)Cắt nhau . Đề cương ôn tập HKI môn toán lớp 9 5 Năm học:2018-2019 a) Vẽ đồ thị với m=6 e) Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o b) Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi f) Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o c) Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân g) Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y d) Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o h) Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x Bài 15 Cho hàm số y = (m -2)x + m + 3 a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến . b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3. c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy. d)Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2 Phần B - HÌNH HỌC Chương I. HỆ THỨC TRONG TAM GIÁC VUÔNG Hệ thức giữa cạnh và đường cao:Hệ thức giữa cạnh và góc: +b 2 a.b, ;c 2 a.c , + a 2 b 2 c 2 , , + h 2 b, .c , + a b c + a.h b.c b 2 b, c 2 c , + .; 1 1 1 2 , 2 , + c c b b h2 b2 c2 Tỷ số lượng giác: b c b c sinB ; cosB ; tanB ; cotB a a c b Tính chất của tỷ số lượng giác: Sin Cos Tan Cot 1/ Nếu 900 Thì: Cos Sin Cot Tan 2/Với nhọn thì 0 < sin < 1, 0 < cos < 1 *sin2 + cos2 = 1 *tan = *cot = *tan . cot =1 Hệ thức giữa cạnh và góc: + Cạnh góc vuông bằng cạnh huyền nhân sin góc đối:b a.SinB.;c a.SinC + Cạnh góc vuông bằng cạnh huyền nhân cos góc kề: b a.CosC.;c a.CosB + Cạnh góc vuông bằng cạnh góc vuông kia nhân tan góc đối:b c.TanB.;c b.TanC + Cạnh góc vuông bằng cạnh góc vuông kia nhân cot góc kề:b c.CotC.;c b.CotB Bµi TËp ¸p dông: Bài 1. Cho ABC vuông tại A, đường cao AH. a) Biết AH = 12cm, CH = 5cm. Tính AC, AB, BC, BH. b) Biết AB = 30cm, AH = 24cm. Tính AC, CH, BC, BH. c) Biết AC = 20cm, CH = 16cm. Tính AB, AH, BC, BH. d) Biết AB = 6cm, BC = 10cm. Tính AC, AH, BH, CH. e) Biết BH = 9cm, CH = 16cm. Tính AC, AB, BC, AH. Bài 2. Cho tam giác ABC vuông tại A có Bµ 600 , BC = 20cm. a) Tính Cµ , AB, AC b) Kẻ đường cao AH của tam giác. Tính AH, HB, HC. Bài 3. Giải tam giác ABC vuông tại A, biết: a) AB = 6cm, Bµ 400 b) AB = 10cm, Cµ 350 c) BC = 20cm, Bµ 580 d) BC = 82cm, Cµ 420 e) BC = 32cm, AC = 20cm f) AB = 18cm, AC = 21cm Bài 4. Không sử dụng bảng số và máy tính, hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần: sin 650; cos 750; sin 700; cos 180; sin 790 Bài 5: (2 điểm) Đề cương ôn tập HKI môn toán lớp 9 7 Năm học:2018-2019 Bài 3. Cho đường tròn tâm O đường kính AB. Lấy điểm E trên đoạn OA sao cho AE > EO . Gọi H là trung điểm của AE. Kẻ dây CD vuông góc với OA tại H a. C/m : ·ACB 90o b. Tứ giác ACED là hình gì? Tại sao? c. Kéo dài DE cắt BC tại I C/m : HI là tiếp thuyến của đường trong đường kính BE. Bài 4: Cho tam giác ABC nhọn nội tiếp đường tròn (O) đường kính AD. Gọi H là trực tâm của tam giác . a) Tính số đo góc ABD b) Tứ giác BHCD là hình gì? Tại sao? c) Gọi M là trung điểm BC . Chứng minh 2OM = AH. Bài 5.Cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn sao cho M· AB 600 . Kẻ dây MN vuông góc với AB tại H. 1. Tứ giác AMHN là hình gì ? Vì sao ? 2. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM): 3. Chứng minh MN2 = 4 AH .HB . 4. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó. 5. Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N; E; F thẳng hàng. Bài 6: Cho tam giác ABC nhọn. Vẽ đường tròn đường kính BC cắt AB, AC lần lượt tại M và N. Gọi H là giao điểm của BN và CM . a. C/m : A, M, H, N cùng thuộc một đường tròn . Xác định tâm I của đường tròn đó . b. C/m AH BC tại E c. C/m : EA. EH = EB. EC d. C/m : MI và NI là các tiếp tuyến của đường tròn đường kính BC . e. Hoặc MO là tiếp tuyến của đường tròn I Bài7: Cho nữa đường tròn (O; R) có đường kính AB. tiếp tuyến tại điểm M trên nữa đường tròn lần lượt cắt hai tiếp tuyến tại A và B ở C và D. a/ Chứng minh : AC + DB = CD. b/ Chứng minh : tam giác COD vuông và AC.BD = R2. c/ OC cắt AM tại E và OD cắt BM tại F. chứng minh : - Tứ giác OEMF là hình chữ nhật. - OE.OC = OF.OD = R2. - EF BD. d/ Chứng minh : AB là tiếp tuyến của đường tròn có đường kính CD. e/ AD cắt BC tại N. chứng minh : MM // AC. Đề cương ôn tập HKI môn toán lớp 9 9 Năm học:2018-2019
File đính kèm:
de_cuong_on_tap_hoc_ki_i_mon_toan_lop_9_nam_hoc_2018_2019.doc

